แสดงข้อมูลผลงานตีพิมพ์ อ้างอิงจากฐาน pubswatch.psu.ac.th (*คลิก GO ทุกครั้งหากกำหนดการค้นใหม่)
| ลำดับ | รายละเอียดผลงาน | ||
|---|---|---|---|
| 1 | Masa, A., Worlee, A., Jehsoh, N. and Hayeemasae, N. (2025). A flower-like morphology in natural rubber latex film binder: Mechanical and antifungal characteristics. JOURNAL OF VINYL & ADDITIVE TECHNOLOGY, 31(4), 917-929. Cited: 0 doi: https://doi.org/10.1002/vnl.22218 | ||
| 2 | Suwan, A., Sukhawipat, N., Pasetto, P., Saetung, A. and Saetung, N. (2025). A new bio-based waterborne polyurethane/silica coating efficient against common and marine bacteria. PROGRESS IN ORGANIC COATINGS, 208 Cited: 0 doi: https://doi.org/10.1016/j.porgcoat.2025.109538 | ||
| 3 | Sukhawipat, N., Kongprabat, T., Uthaipan, N., Saetung, A. and Saetung, N. (2025). A new green rigid polyurethane foam based on modified palm oil: Preliminary study of their potential for marine buoy applications. JOURNAL OF APPLIED POLYMER SCIENCE, 142(6) Cited: 0 doi: https://doi.org/10.1002/app.56477 | ||
| 4 | Masa, A., Jehsoh, N. and Hayeemasae, N. (2025). Application of natural rubber latex foam as an effective oil absorbent. POLIMEROS-CIENCIA E TECNOLOGIA, 35(1) Cited: 1 doi: https://doi.org/10.1590/0104-1428.20240027 | ||
| 5 | Puteh, M., Kaesaman, A., Saiwari, S. and Nakason, C. (2025). Can Grafted Natural Rubber Compatibilizers Enhance Interfacial Compatibility and Performance of Dynamically Cured NR/EVA Thermoplastic Vulcanizates. JOURNAL OF VINYL & ADDITIVE TECHNOLOGY Cited: 0 doi: https://doi.org/10.1002/vnl.70002 | ||
| 6 | Kaesaman, A., Khunrang, T. and Nakason, C. (2025). Cyclization of natural rubber (NR) latex: Synthesis, characterization and application in NR compounds and as a compatibilizer in NR/acrylonitrile butadiene rubber (NBR) blends. EXPRESS POLYMER LETTERS, 19(8), 753-772. Cited: 0 doi: https://doi.org/10.3144/expresspolymlett.2025.58 | ||
| 7 | Masa, A., Jehsoh, N. and Hayeemasae, N. (2025). Dye Adsorbent from Natural Rubber Latex Foam: Efficiency and Post-Utilization. POLYMERS, 17(1) Cited: 2 doi: https://doi.org/10.3390/polym17010106 | ||
| 8 | Masa, A., Hayeemasae, N. and Fathurrohman, MI. (2025). Effect of hydrazine content on mechanical and thermal properties of hydrogenated natural rubber. JOURNAL OF ELASTOMERS AND PLASTICS, 57(6), 917-934. Cited: 0 doi: https://doi.org/10.1177/00952443251340946 | ||
| 9 | Hayeemasae, N., Soontaranon, S., Zakaria, Z., Rasidi, MSM. and Masa, A. (2025). Effect of styrene content on structure and properties of vulcanizates from natural rubber grafted with polystyrene. PROGRESS IN RUBBER PLASTICS AND RECYCLING TECHNOLOGY Cited: 0 doi: https://doi.org/10.1177/14777606251321527 | ||
| 10 | Kraibut, A., Kaewsakul, W., Saiwari, S., Sahakaro, K., Noordermeer, JWM. and Dierkes, WK. (2025). Elucidating Degradation Phenomena During Mixing of Silica-Natural Rubber Compounds: The Interplay of Viscoelastic Behavior and Silane Microstructures. POLYMER ENGINEERING AND SCIENCE Cited: 0 doi: https://doi.org/10.1002/pen.70095 | ||
| 11 | Masa, A., Baru, F., Saiwari, S. and Hayeemasae, N. (2025). Enhancing antibacterial performance while maintaining natural rubber foam specifications: Is it possible?. CELLULAR POLYMERS Cited: 0 doi: https://doi.org/10.1177/02624893251370488 | ||
| 12 | Matchawet, S., Dasaesamoh, A., Hayeemasae, N., Worlee, A. and Sookyung, U. (2025). Enhancing the performance of waste-paper particleboard using silica and aluminum hydroxide fillers. PROGRESS IN RUBBER PLASTICS AND RECYCLING TECHNOLOGY, 41(1), 53-65. Cited: 0 doi: https://doi.org/10.1177/14777606241243114 | ||
| 13 | Kaesaman, A., Intharapat, P. and Nakason, C. (2025). Flame Retardancy and Properties of Thermoplastic Vulcanizates from Dibutyl Phosphate-Bound Natural Rubber/Ethylene Vinyl Acetate Blends. POLYMER-PLASTICS TECHNOLOGY AND MATERIALS, 64(2), 190-207. Cited: 1 doi: https://doi.org/10.1080/25740881.2024.2393781 | ||
| 14 | Masa, A., Jehsoh, N., Dueramae, S. and Hayeemasae, N. (2025). Green tea-assisted silver depositing on natural rubber films: Surface characterization and antibacterial efficacy. EXPRESS POLYMER LETTERS, 19(7), 653-669. Cited: 0 doi: https://doi.org/10.3144/expresspolymlett.2025.50 | ||
| 15 | Adlim, M., Putri, HA., Daffa, A., Puspita, K., Rahmayani, RFI., Bakar, NHHA., Ilham, Z., Salaeh, S., Ozmen, I. and Yavuz, M. (2025). Immobilization Method of ZnO Nanoparticles on Nylon Monofilament Assembled as a Bottle Brush Model and Photocatalytic Activities on Rhodamine B Decomposition. INTERNATIONAL JOURNAL OF TECHNOLOGY, 16(5) Cited: 1 doi: https://doi.org/10.14716/ijtech.v16i5.7768 | ||
| 16 | Hayeemasae, N., Worlee, A. and Masa, A. (2025). Influence Of Calcium Carbonate Content On Properties Of Natural Rubber And Acrylic Blends For Coating Applications. JOURNAL OF APPLIED SCIENCE AND ENGINEERING, 28(2), 411-419. Cited: 4 doi: https://doi.org/10.6180/jase.202502_28(2).0019 | ||
| 17 | Worlee, A., Saiwari, S., Dierkes, W., Sarkawi, SS., Jantaporn, W. and Masae, M. (2025). Innovative approaches to thermochemical devulcanization of carbon black-filled SBR. PROGRESS IN RUBBER PLASTICS AND RECYCLING TECHNOLOGY Cited: 0 doi: https://doi.org/10.1177/14777606251351050 | ||
| 18 | Rashid, SAZ., Zainuddin, NA., Hayeemasae, N., Ramli, MR. and Shuib, RK. (2025). Investigation of Thermal Aging, Accelerated Weathering, and Durability of Self-Healing Natural Rubber Reinforced Multi-Walled Carbon Nanotube (MWCNT) Composites. POLYMER ENGINEERING AND SCIENCE, 65(9), 4791-4799. Cited: 0 doi: https://doi.org/10.1002/pen.70020 | ||
| 19 | Jarnthong, M., Wannalak, A., Masa, A., Thongnuanchan, B., Saito, H., Soontaranon, S., Sakai, T. and Lopattananon, N. (2025). Nanocellulose reinforcement of epoxidized natural rubber: Enhancing strain-induced crystallization for high-performance bio-composites. POLYMER COMPOSITES, 46(11), 9906-9919. Cited: 3 doi: https://doi.org/10.1002/pc.29594 | ||
| 20 | Srichai, K., Tsupphayakornaek, P., Suwan, A., Chaisit, T., Saetung, A. and Saetung, N. (2025). New biofilm composite materials from natural rubber and cellulose nanocrystals from rubber seed shell: Preliminary study on cytotoxicity properties. PROGRESS IN ORGANIC COATINGS, 204 Cited: 2 doi: https://doi.org/10.1016/j.porgcoat.2025.109250 | ||
| 21 | Hayeemasae, N., Worlee, A., Thainiramit, P. and Masa, A. (2025). Optimal blending ratios of natural rubber latex and acrylic emulsion for coating applications. JOURNAL OF THERMOPLASTIC COMPOSITE MATERIALS Cited: 0 doi: https://doi.org/10.1177/08927057251344269 | ||
| 22 | Hayeemasae, N., Saiwari, S., Soontaranon, S., Fathurrohman, MI. and Masa, A. (2025). Potential for using sepiolite as dispersing agent in phenolic resin crosslinked natural rubber/silica composites. EXPRESS POLYMER LETTERS, 19(3), 339-349. Cited: 0 doi: https://doi.org/10.3144/expresspolymlett.2025.24 | ||
| 23 | Kaesaman, A., Chuaysakul, R. and Nakason, C. (2025). Preparation of sustainable creaming agents for eco-friendly processing of natural rubber latex concentrates. JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY Cited: 0 doi: https://doi.org/10.1080/01932691.2025.2502877 | ||
| 24 | Sarkar, S., Aiswarya, S., Salaeh, S., Hirschberg, V. and Banerjee, SS. (2025). Self-healing and shape memory functions in elastomers: Recent advances and future prospectives. POLYMER ENGINEERING AND SCIENCE, 65(4), 1620-1654. Cited: 1 doi: https://doi.org/10.1002/pen.27092 | ||
| 25 | Hayeemasae, N., Soontaranon, S. and Masa, A. (2025). Structure - property relationships of different natural rubber grades. PROGRESS IN RUBBER PLASTICS AND RECYCLING TECHNOLOGY, 41(1), 36-52. Cited: 5 doi: https://doi.org/10.1177/14777606241243113 | ||
| 26 | Salaeh, S., Das, A., Marzec, A., Thongnuanchan, B., Szadkowski, B. and Wiessner, S. (2025). Structure-Property Relationship of Diamine Cross-Linked Acrylate-Modified Natural Rubber: Improving Mechanical Properties, Shape Memory Behavior, and Thermal Stability of the Vulcanizates. ACS APPLIED POLYMER MATERIALS, 7(12), 8335-8350. Cited: 0 doi: https://doi.org/10.1021/acsapm.5c01671 | ||
| 27 | Kraibut, A., Kaewsakul, W., Saiwari, S., Sahakaro, K., Noordermeer, JWM. and Dierkes, WK. (2025). Suppressed degradation by stabilizers during mixing of silica/silane-filled natural rubber. POLYMER DEGRADATION AND STABILITY, 233 Cited: 1 doi: https://doi.org/10.1016/j.polymdegradstab.2024.111164 | ||
| 28 | Suwan, A., Sukhawipat, N., Saetung, A., Saetung, N. and Pasetto, P. (2025). Synthesis of silane-functionalized polyols from natural rubber by thiol-ene click reaction and preparation of waterborne polyurethane films. PROGRESS IN ORGANIC COATINGS, 201 Cited: 3 doi: https://doi.org/10.1016/j.porgcoat.2025.109109 | ||
| 29 | Chaipo, S., Itsaradamkoeng, P., Salaeh, S., Wongtimnoi, K., Putson, C. and Zhang, JW. (2025). Tailored chain interaction of binary and ternary PVDF-HFP and PVDF-TrFE-CTFE / graphene nanoplatelets on dielectric properties and charge density capability. POLYMER, 326 Cited: 0 doi: https://doi.org/10.1016/j.polymer.2025.128339 | ||
| 30 | Saiwari, S., Sripornsawat, B. and Nakason, C. (2025). Transformation of truck tire rubber waste into thermoplastic vulcanizates: influence of vulcanization systems and compatibilizers in copolyester blends. POLYMER BULLETIN, 82(3), 971-997. Cited: 0 doi: https://doi.org/10.1007/s00289-024-05572-8 | ||
| 31 | Nakason, C., Nuthong, P. and Kaesaman, A. (2025). Transforming waste cooking oil into zinc soap: a sustainable approach to multifunctional additives for enhancing natural rubber composites. JOURNAL OF POLYMER RESEARCH, 32(5) Cited: 0 doi: https://doi.org/10.1007/s10965-025-04392-2 | ||
| 32 | Jarnthong, M., Wannalak, A., Thongnuanchan, B., Kaesaman, A., Saito, H., Soontaranon, S. and Lopattananon, N. (2025). Unveiling the Impact of Cellulose Nanofiber on the Mechanical Properties and Strain-Induced Crystallization Mechanism of ENR Nanocomposites. POLYMER ENGINEERING AND SCIENCE Cited: 0 doi: https://doi.org/10.1002/pen.70152 | ||
| รวม WoS/ISI 32 รายการ 24 citations | |||
Copyright ©2021-2022 by Faculty of Science and Technology
Prince of Songkla University, 181 Rusamilae Meaung Pattani, 94000
Tel: 073-331303 Email: sat-it@psu.ac.th